7 research outputs found

    Antifungal Effect of Non-Woven Textiles Containing Polyhexamethylene Biguanide with Sophorolipid: A Potential Method for Tinea Pedis Prevention

    No full text
    Tinea pedis is a preventable skin disease common in elderly or diabetic patients. Daily foot washing is effective for prevention, but can be difficult for many patients. Additionally, conventional methods cannot eliminate fungi within the stratum corneum, a common site for fungal invasion. This study investigates the antifungal effects, cytotoxicity, permeability, and efficacy of non-woven textiles containing polyhexamethylene biguanide (PHMB) mixed with sophorolipid. Permeability of PHMB with varying concentrations of sophorolipid was assessed via a cultured skin model. Stratum corneum PHMB concentration was quantified by polyvinylsulphuric acid potassium salt titration and cytotoxicity was assayed via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide. Antifungal effects were evaluated via a new cultured skin/Trichophyton mentagrophytes model, with varying PHMB exposure duration. Clinically-isolated Trichophyton were applied to the feet of four healthy volunteers and then immediately treated with the following methods: washing with soap, a non-woven textile with PHMB, the textile without PHMB, or without washing. Fungal colony forming units (CFUs) were evaluated after one of these treatments were performed. Sophorolipid with various concentrations significantly facilitated PHMB permeation into the stratum corneum, which was not in a dose-dependent manner. Significant PHMB antifungal effects were achieved at 30 min, with low cytotoxicity. Textiles containing PHMB significantly reduced CFU of fungi in healthy volunteers to levels comparable to soap washing. Our results indicate the utility of this product for tinea pedis prevention in clinical settings

    Antifungal Effect of Non-Woven Textiles Containing Polyhexamethylene Biguanide with Sophorolipid: A Potential Method for Tinea Pedis Prevention

    No full text
    Tinea pedis is a preventable skin disease common in elderly or diabetic patients. Daily foot washing is effective for prevention, but can be difficult for many patients. Additionally, conventional methods cannot eliminate fungi within the stratum corneum, a common site for fungal invasion. This study investigates the antifungal effects, cytotoxicity, permeability, and efficacy of non-woven textiles containing polyhexamethylene biguanide (PHMB) mixed with sophorolipid. Permeability of PHMB with varying concentrations of sophorolipid was assessed via a cultured skin model. Stratum corneum PHMB concentration was quantified by polyvinylsulphuric acid potassium salt titration and cytotoxicity was assayed via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide. Antifungal effects were evaluated via a new cultured skin/Trichophyton mentagrophytes model, with varying PHMB exposure duration. Clinically-isolated Trichophyton were applied to the feet of four healthy volunteers and then immediately treated with the following methods: washing with soap, a non-woven textile with PHMB, the textile without PHMB, or without washing. Fungal colony forming units (CFUs) were evaluated after one of these treatments were performed. Sophorolipid with various concentrations significantly facilitated PHMB permeation into the stratum corneum, which was not in a dose-dependent manner. Significant PHMB antifungal effects were achieved at 30 min, with low cytotoxicity. Textiles containing PHMB significantly reduced CFU of fungi in healthy volunteers to levels comparable to soap washing. Our results indicate the utility of this product for tinea pedis prevention in clinical settings

    Shear Stress-Normal Stress (Pressure) Ratio Decides Forming Callus in Patients with Diabetic Neuropathy

    No full text
    Aim. Callus is a risk factor, leading to severe diabetic foot ulcer; thus, prevention of callus formation is important. However, normal stress (pressure) and shear stress associated with callus have not been clarified. Additionally, as new valuables, a shear stress-normal stress (pressure) ratio (SPR) was examined. The purpose was to clarify the external force associated with callus formation in patients with diabetic neuropathy. Methods. The external force of the 1st, 2nd, and 5th metatarsal head (MTH) as callus predilection regions was measured. The SPR was calculated by dividing shear stress by normal stress (pressure), concretely, peak values (SPR-p) and time integral values (SPR-i). The optimal cut-off point was determined. Results. Callus formation region of the 1st and 2nd MTH had high SPR-i rather than noncallus formation region. The cut-off value of the 1st MTH was 0.60 and the 2nd MTH was 0.50. For the 5th MTH, variables pertaining to the external forces could not be determined to be indicators of callus formation because of low accuracy. Conclusions. The callus formation cut-off values of the 1st and 2nd MTH were clarified. In the future, it will be necessary to confirm the effect of using appropriate footwear and gait training on lowering SPR-i
    corecore